4. ARUTYUNYAN N.KH., Some problems of the theory of creep for inhomogeneously ageing bodies. Izv. Akad. Nauk SSSR, MTT, 3, 1976.
5. ARYTYUNYAN N.KH. and KOLMANOVSKII V.B., Theory of Creep of Inhomogeneous Bodies. Nauka, Moscow, 1983.
6. GEL'FAND I.M. and SHILOV G.E., Generalized Functions and Operations on them. Fizmatgiz, Moscow, 1958.
7. VLADIMIROV V.S., Equations of Mathematical Physics. Nauka, Moscow, 1981.
8. UFLYAND YA.S., Integral Transforms in Problems of the Theory of Elasticity. Nauka, Moscow, Leningrad, 1967.
9. MARKUSHEVICH A.I., A Short Course in the Theory of Analytic Functions. Nauka, Moscow, 1978.
lo. ALEKSANDROV V.M., Contact Problems for an Elastic Wedge. Inzh. Zh. MTT, 2, 1967.
10. VOROVICH I.I., ALEKSANDROV V.M. and BABESHKO V.A., Non-classical Mixed Problems of the Theory of Elasticity. Nauka, Moscow, 1974.
11. GRADSHTEIN I.S. and RYZHIK I.M., Tables of Integrals, Sums, Series and Products. Nauka, Moscow, 1971.
12. ShTAYERMAN I.YA., The Contact Problem of the Theory of Elasticity. Gostekhizdat, Moscow, Leningrad, 1949.
13. ARUTYUNYAN N. Kh., Some Problems of the Theory of Creep. Gostekhizdat, Moscow, Leningrad, 1952.
14. MANZHIROV A.V., Contact problems of the interaction between viscoelastic foundations subjected to ageing and systems of stamps not applied simultaneously. PMM, 51, 4, 1987.
15. ARUTYUNYAN N.KH., Fundamental solutions of the problems for a growing body in the form of a quarter-plane. Izv. Akad. Nauk SSSR, MTT, 2, 1987.

APPLICATION OF THE PRINCIPLE OF CHOICE TO THE PROBLEM OF the initial development of slip lines from a corner point*

L.A. KIPNIS and G.P. CHEREPANOV

Abstract

Symmetrical problems of initial development near the corner point of the

 boundary of the body of a plastic zone modelled by two straight slip lines emerging from the vertex are considered under conditions of plane deformation. Functional Wiener-Hopf equations of the problems and their exact analytic solutions are given. The length of the slip lines and the angle of their inclination to the boundary are determined. The principle of choice is used to find the latter. According to this principle, of all possible directions of the development of slip lines, the direction realized corresponds to the maximum value of the rate of dissipation of energy by the body.The last few years have seen the publication of a number of papers in mechanics of fracture, dealing with problems of initial development within the bodies, near the concentrators, of plastic zones modelled by straight slip lines emerging from the vertex at some angle to the boundary /1-6/. Everyone of these problems reduces to a functional Wiener-Hopf equation, and its solution is used to establish the dependence of the length of the slip line on its angle of inclination to the boundary, the latter being a free parameter. The value of this angle at which the slip line is of maximum length, is taken as the unknown quantity which determines the direction in which the slip line develops.

In the present paper a new, stricter approach is proposed, towards solving the problem of the direction in which the slip lines emerging from the corner point develop. The approach is based on the principle of
choice /7/. According to this principle, of all possible directions, the direction realised is that corresponding to the maximum value of the rate of dissipation of energy by the body.

1. We consider, under conditions of plane deformation, the problem of the initial development of plastic deformations near the corner point 0 of the boundary of a homogeneous,
isotropic, ideally elastoplastic body (Fig.1). The problem is

Fig. 1 assumed to be symmetrical about the bisectrix of the angle. We study the cases with the following boundary conditions specified at its edges: a) the edges are rigidly clamped; b) the edges are stress-free; c) tangential stress and normal displacement at the edges are equal to zero. We assume that the plastic deformations are concentrated along two straight slip lines which emerge from the corner point and are symmetrical about the bisect.rix, with the length of the slip lines small compared with the size of the body.

Using the "microscope principle" /8/ and taking into account the symmetry of the problem in question, we arrive, in each of the cases a), b) and c), at the corresponding boundary value problem of class $N / 8 /$ of the equilibrium of an infinite elastic wedge $\beta-\alpha<\theta<\beta, 0<r<\infty, \pi / 2<\alpha<\pi$ containing a slip
line at the vertex. An asymptotic curve is formed at infinity, representing a solution of the singular canonical problem of the theory of elasticity for a wedge / 8 , $9 /$ determined, apart from a single arbitrary real constant C, which characterizes the intensity of external field and which is assumed given.

We require to find the length l of the $s l i p$ line and the angle β of its inclination to the edge.

Below we give the solutions of the problem listed above, of class N, and determine the function $l(\beta)$. According to the principle of choice we take, as the angle of inclination of the slip line to the edge, the value of $\beta \in 10 ; \alpha[$ which imparts the maximum value to the function

$$
W(\beta)=\left|\tau_{s} \int_{0}^{l}\left\langle u_{r}\right\rangle_{\theta=0} d r\right|
$$

Here τ_{s} is the limiting shear yield, $\langle a\rangle$ is the jump in the value of a, u_{r}, u_{0} are the displacements and a dot denotes differentiation with respect to C.

In what follows, we assume that the given load parameter C increases and decreases with time (simple loading).
2. Let the case a) be realized. The boundary conditions have the form

$$
\begin{align*}
& \theta=\beta, \quad u_{\theta}=u_{r}=0 ; \quad \theta=\beta-\alpha, \quad \tau_{r \theta}=0, \quad u_{\theta}=0(\beta \in] 0 \tag{2.1}\\
& \beta_{0}[\bigcup] \beta_{0} ; \alpha[) \\
& \theta=0,\left\langle\sigma_{\theta}\right\rangle=\left\langle\tau_{r \theta}\right\rangle=0,\left\langle u_{\theta}\right\rangle=0 \\
& \theta=0, \quad r<l, \quad \tau_{r \theta}=\tau_{1} ; \theta=0, \quad r>l,\left\langle u_{r}\right\rangle=0 \tag{2.2}\\
& \theta=0, \quad r \rightarrow l-0, \quad\left\langle\frac{\partial u_{r}}{\partial r}\right\rangle--\frac{4\left(1-v^{2}\right)}{E} \frac{k_{\mathrm{II}}}{\sqrt{2 \pi(l-r)}} \tag{2.3}\\
& \theta=0, \quad r \rightarrow l+0, \quad \tau_{r \theta} \sim \frac{k_{\mathrm{II}}}{\sqrt{2 \pi(r-\bar{l})}} \\
& \theta=0, \quad r \rightarrow \infty, \quad \tau_{r \theta}=C g r^{\lambda}+0(1 / r) \tag{2.4}\\
& g=\frac{(2 \pi)^{\lambda}}{2 x}\left[\frac{(\lambda+1+x) \sin \lambda \alpha}{\sin (\lambda+2) \alpha} \sin (\lambda+2)(\alpha-\beta)-\lambda \sin \lambda(\alpha-\beta)\right] \\
& \left(x = 3 - 4 v ; g < 0 \text { when } \beta \in \left[0 ; \beta_{0}[; g>0 \text { when } \beta \in] \beta_{0} ; \alpha \mid ;\right.\right. \\
& \left.g\left(\beta_{0}\right)=0\right)
\end{align*}
$$

Here $\sigma_{\theta}, \tau_{r \theta}, \sigma_{r}$ are the stresses, E is Young's modulus, v is Poisson's ratio, k_{11} is the stress intensity coefficient at the top of the slip line to be determined, and $\lambda \in]-1 / 2$; 0 is a unique root of the characteristic equation

$$
x \sin 2(\lambda+1) \alpha-(\lambda+1) \sin 2 \alpha=0
$$

corresponding to the canonical singular problem in the interval]-1; $0[$; where C is the constant introduced in Sect.l, which has the dimension of force divided by length to the power $\lambda+2 ; \tau_{1}=\tau_{s}, \quad$ if $C g>0 ; \tau_{1}=-\tau_{s}$, if $C g<0$.

The solution of the formulated problem represents the sum of solutions of the following two problems. 'lhe first (problem A) differs from the original problem in that instead of the
first condition (2.2) we have

$$
\begin{equation*}
\theta=0, r<l_{,} \tau_{r \theta}=\tau_{1}-\epsilon g r^{\lambda} \tag{2.5}
\end{equation*}
$$

and at infinity the stresses decay as $o(1 / r)$ (in the expression for $\boldsymbol{\tau}_{r \theta}$ in (2.4) the first term is not present). The second problem represents the corresponding canonical singular problem for a wedge. Since the solution of the second problem is known, it remains to construct the solution of problem A.

Applying the integral Mellin transform with a complex parameter $p / 10 /$ to the equilibrium equations, to the compatibility of deformation conditions, to Hooke's law and to the conditions (2.1), and taking into account the second condition (2.2) and condition (2.5), we arrive at the functional wiener-Hopf problem A

$$
\begin{align*}
& \frac{\tau_{1}}{p+1}+\frac{\tau_{2}}{p+\lambda+1}+\Phi^{+}(p)=K(p) G(p) \Phi^{-}(p)\left(-\varepsilon_{1}<\operatorname{Re} p<\varepsilon_{2}\right) \tag{2.6}\\
& \Phi^{+}(p)=\int_{1}^{\infty} \tau_{r \theta}(\rho l, 0) \rho^{p} d \rho, \quad \Phi^{-}(p)=\left.\frac{E}{4\left(1-\nu^{2}\right)} \int_{0}^{1}\left\langle\frac{\partial u_{r}}{\partial r}\right\rangle\right|_{r=\rho 1} \rho^{p} d \rho \\
& \tau_{2}=-C g l^{\pi}, K(p)=\operatorname{ctg} p \pi \\
& G(p)=\frac{\left\{\delta\left[x_{1}-2\left(x \sin ^{2} p \beta+p^{2} \sin ^{3} \beta\right)\right]-\Delta(x \sin 2 p \beta-p \sin 2 \beta)\right\} \sin p \pi}{(\kappa \sin 2 p \alpha-\beta \sin 2 \alpha) \cos p \pi} \\
& \Delta=\sin 2 p(\alpha-\beta)+p \sin 2(\alpha-\beta), \delta=\cos 2 p(\alpha-\beta)- \\
& \quad \cos 2(\alpha-\beta) \\
& x_{1}=(\kappa+1)^{2} / 2
\end{align*}
$$

where ($\varepsilon_{1}, \varepsilon_{2}$ are sufficiently small positive numbers). The solution of Eq. (2.6) is constructed in the same manner as the solution of the equations of the winer-Hopf problems considered in /11/. We have $(\Gamma(z)$ is the gamma function)

$$
\begin{aligned}
& \Phi^{+}(p)=-K^{+}(p) G^{+}(p)\left\{\frac{\tau_{1}}{p p+1}\left[\frac{1}{K^{+}(p) G^{+}(p)}-\frac{1}{K^{+}(-1) G^{+}(-1)}\right]+\right. \\
& \left.\frac{\mathrm{T}_{2}}{p+\lambda+1}\left[\frac{1}{K^{+}(p) G^{+}(p)}-\frac{1}{K^{+}(-\lambda-1) G^{+}(-\lambda-1)}\right]\right\} \\
& (\operatorname{Re} p<0) \\
& \Phi^{-}(p)=\frac{p G^{-}(p)}{K^{-}(p)}\left[\frac{\tau_{1}}{(p+1) K^{+}(-1) G^{+}(-1)}+\right. \\
& \left.\frac{\tau_{2}}{(p+\lambda+1) K^{+}(-\lambda-1) G^{+}(-\lambda-1)}\right] \quad(\operatorname{Re} p>0) \\
& \exp \left[\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\ln G(z)}{z-p} d z\right]=\left\{\begin{array}{l}
G^{+}(p), \operatorname{Re} p<0 \\
G^{-}(p), \\
\text { Re } p>0
\end{array}\right. \\
& K \pm(p)=\Gamma(1 \mp p) / \Gamma(1 / 2 \mp p)
\end{aligned}
$$

Using (2.7), the asymptotic forms (2.3) and a theorem of Abel-type /12/ we find

$$
\begin{equation*}
k_{\mathrm{HI}}=\frac{\sqrt{2} g \Gamma(\lambda+3 / 2)}{\Gamma(\lambda+2) G^{+}(-\lambda-1)} C l^{\lambda+1 /:}-\frac{\sqrt{\pi}}{\sqrt{2} G^{+}(-1)} \tau_{1} \sqrt{l} \tag{2.8}
\end{equation*}
$$

We assume, that there are no stress concentrations at the head of the slip line. From (2.8) we have

$$
\begin{equation*}
l=D\left(\frac{|C|}{\tau_{s}}\right)^{-1 / \lambda}, \quad D=\left[\frac{2|g| \Gamma(\lambda+3 / 2) G^{+}(-1)}{\sqrt{\pi} \Gamma(\lambda+2) G^{+}(-\lambda-1)}\right]^{-1 / \lambda} \tag{2.9}
\end{equation*}
$$

Let us apply the principle of choice to find the angle of inclination of the slip line with respect to the edge. Let us consider the function

$$
I(C)=\left.\int_{0}^{1}\left\langle u_{r}\right\rangle\right|_{\theta-0} d r
$$

By the well-known formula of differentiation of integrals which depend on a parameter, with variable limits we have

$$
\begin{equation*}
I=\left.\left\langle u_{r}\right\rangle\right|_{r=l, \theta=0} r+\left.\int_{0}^{l}\left\langle u_{r}\right\rangle\right|_{\theta=0} d r \tag{2.10}
\end{equation*}
$$

Since $\left.\left\langle u_{r}\right\rangle\right|_{\substack{r=l \\ \theta=0}}=0$ it follows from (2.10) that

$$
\begin{equation*}
I=\left.\int_{0}^{l}\left\langle u_{\tau}^{\cdot}\right\rangle\right|_{\theta=0} d r \tag{2.11}
\end{equation*}
$$

Using the equality

$$
I=-4\left(1-v^{2}\right) E^{-1} \Phi^{-}(1) l^{2}
$$

we obtain by (2.7), (2.9), $(2,11)$

$$
\begin{align*}
& W=Q(\alpha) W_{0}(\alpha, \beta) \frac{\left(1-v^{2}\right)|C|^{-2 / \lambda-1}}{E \tau_{z}^{-2 / \lambda-2}} \tag{2.12}\\
& Q=\frac{\pi}{\lambda+2}\left[\frac{2 \Gamma(\lambda+3 / 2)}{\sqrt{\pi} \Gamma(\lambda+2)}\right]^{-2 / \lambda}, \quad W_{0}=|g|^{-2 / \lambda} \frac{\left[G^{+}(-1)\right]^{-2 / \lambda-2}}{\left[G^{+}(-\lambda-1)\right]^{-2 / \lambda}}
\end{align*}
$$

The dependence $\boldsymbol{W}_{0}(\beta)$ is qualitatively represented in Fig.2. The dashed line corresponds to the case $\pi / 2<\alpha<\alpha_{0}$ and the solid line to the case $\alpha_{0}<\alpha<\pi\left(\alpha_{0} \approx 11 \pi / 15\right.$ is the single root of the equation $W_{0}\left[\beta_{*}(\alpha)\right]=W_{0}(0), \beta_{*}$ is the point of the maximum of the function $\left.W_{0}(\beta)\right)$. It appears that $W_{0}\left(\beta_{*}\right)>W_{0}(0)$ for $\pi / 2<\alpha<\alpha_{0}$ and $W_{0}\left(\beta_{*}\right)<W_{0}(0)$ for $\alpha_{0}<\alpha<$ π.

Fig. 2

Fig. 3

On the basis of the principle of choice for the original symmetric problem we can draw the following conclusions. For $\pi / 2<u<\alpha_{0}$ the slip lines emerging from the corner point O are developing under the angle $\beta=\beta_{*}$ with respect to the edges, which increases as the wedge aperture angle increases. The values of the angle β_{*}, of the characteristic root λ and the coefficient D for some values of the angle α are given below ($v=0.25$)

$$
\begin{array}{lcccrcrrr}
\alpha, \text { deg. } & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 \\
\beta_{*}, \text { deg. } & 45 & 50 & 55 & 59 & 64 & 68 & 73 & 77 \\
\hline D \cdot 10^{3} & 28 & 54 & 80 & 106 & 134 & 162 & 191 & 221 \\
D \cdot 10^{3} & 0.860 \cdot 10^{-3} & 0.238 \cdot 10^{-4} & 0.0329 & 1.45 & 19.3 & 102 & 343 & 855
\end{array}
$$

For $\alpha_{n}<\alpha<\pi$ the slip lines develop along the edges. The corresponding values of λ and D are

α, deg.	135	140	145	150	155	160	165	170	175
$-\lambda \cdot 10^{3}$	252	284	315	346	375	403	430	455	474
$D \cdot 10^{3}$	28.9	55.3	86.5	119	147	170	187	196	197

If the case $\alpha=\alpha_{0}$ is realized, then four slip lines emerge from the corner point, two of which are located along the edges and two are at an angle to the edges.

For $\alpha=\pi$ we arrive at the known result/4, 5/, where the direction of the development of the slip line is found from the condition of maximum of its length.
3. Let the case b) be realized. The boundary conditions differ from those paresented in paragraph 2 in that instead of the first condition (2.1) we have

$$
\theta=\beta, \sigma_{\theta}=\tau_{r \theta}=0(\beta \in 10 ; \alpha \mid)
$$

and the function $g>0$ is determined by the formula

$$
g=\frac{(2 \pi)^{\lambda}}{2}\left[\lambda \sin \lambda(\alpha-\beta)-\frac{\lambda \sin \lambda \alpha}{\sin (\lambda+2) \alpha} \sin (\lambda+2)(\alpha-\beta)\right]
$$

and $\lambda \in 1-1 / 2 ; 0]$ represents the single root of the characteristic equation

$$
\sin 2(\lambda+1) x+(\lambda+1) \sin 2 \alpha=0
$$

corresponding to the canonical singular problem in the interval $1-1 ; 0[$.
The problem in question reduces to a Wiener-Hopf equation of the form (2.6), where

$$
\begin{aligned}
& G(p)=\frac{\left[2 \delta\left(\sin ^{2} p \beta-p^{2} \sin ^{2} \beta\right)+\Delta(\sin 2 p \beta+p \sin 2 \beta)\right] \cos p \pi}{(\sin 2 p \alpha+p \sin 2 \alpha) \sin p \pi} \\
& K(p)=-\operatorname{tg} p \pi
\end{aligned}
$$

Using the solutions of this equation we obtain an expression for l and W, differing from (2.9) and (2.12) in, that

$$
\begin{aligned}
& D=\left[\frac{\sqrt{\pi} g \Gamma(\lambda+2) G^{+}(-1)}{2(\lambda+1) \Gamma(\lambda+3 / 2) G^{+}(-\lambda-1)}\right]^{-1 / \lambda}, \\
& Q=\left[\frac{16}{\pi(\lambda+2)}\right]\left[\frac{\sqrt{\pi} \Gamma(\lambda+2)}{2(\lambda+1) \Gamma(\lambda+3 / 2)}\right]^{-2 / \lambda}
\end{aligned}
$$

Fig. 3 shows the function $W_{0}(\beta)$. The function reaches its maximum at the point β_{*}. The slip lines develop, in accordance with the principle of choice, at an angle β_{*} to the edges. The values of this angle, as well as the quantities λ and D, are given below

α, deg.	95	105	115	125	135	145	155	165	175
$\beta_{*},{ }^{\text {deq }}$ d	7	${ }^{52}$	8	64	70	77	83	92	101
$\overline{\mathrm{D} .103}$	${ }_{181}$	248	348	414	${ }_{93}^{456}$	480	493	499	499
		143	129	107					

When $\quad \alpha=\pi$, the formula for the length of the slip lines is indentical with the known formula /1, 6/ (the numerical factors differ by less than 0.001), and the angle of their inclination to the continuation of the crack is 76° (in $/ 1 /$ this angle is found from the condition of maximum length of the slip line, and is equal to 72°).
4. In case c), the first condition of (2.1) is replaced by

$$
\theta=\beta, \tau_{r \theta}=0, u_{\theta}=0(\beta \in \mathrm{j} 0 ; \alpha \mathrm{l})
$$

and the root λ of characteristic equation of the corresponding canonical singular problem on the interval $1-1 ; 0[$ is equal to $-2+\pi / \alpha$, while $g=\sin (\pi \beta / \alpha)$.

The Wiener-Hopf equation of the problem in question, the formulas for l and W, and the graph of the function W_{0}, have the same form as in the previous cases (see Sect.3) in which

$$
G(p)=\frac{[\delta(\sin 2 p \beta+p \sin 2 \beta)+\Delta(\cos 2 p \beta-\cos 2 \beta)] \cos p \pi}{(\cos 2 p \alpha-\cos 2 \alpha) \sin p \pi}
$$

The values of the coefficient D are given below

$$
\begin{array}{llllllllll}
\underset{D}{a} \text {, deg. } & \begin{array}{cccccccc}
95 & 105 & 115 & 125 & 135 & 145 & 155 & 165 \\
& 1.93 & 2.03 & 2.14 & 2.26 & 2.40 & 2.54 & 2.70 \\
2.90 & 3.24
\end{array}
\end{array}
$$

and the angle of inclination of the slip lines to the edges is $\beta_{m} \approx \alpha / 2$, accurate to within 0.5°.

REFERENCES

1. CHEREPANOV G.P., Plastic rupture lines at the tip of a crack. PMM, 40, 4, 1976.
2. Cherepanov G.P., Mechanics of brittle fracture. N.Y.: McGraw-Hill, 952, 1979.
3. KULIYEV V.D., PLastic rupture lines at the vertex of a wedge. Prikl. Mekhanika, 15, 3, 1979.
4. BEREZHNITSKII L.T. and KUNDRAT N.M., On plastic bands at the tip of a linear rigid inclusion. Problemy Prochnosti, 11, 1982.
5. BEREZHNITSKII L.T. and KUNDRAT N.M., on the appearance and development of plastic deformations near a sharp, rigid inclusion. Fiz.-Khim. Mekhanika Materialov. 19, 6, 1983.
6. KIPNIS L.A. and CHEREPANOV G.P., Slip lines at the vertex of a wedqe-like cut. PMM, 48, 1 , 1984.
7. Cherepanov G.P., on the problem of non-uniqueness in the theory of plasticity. Dokl. Akad. Nauk SSSR, 218, 4, 1974.
8. CHEREPANOV G.P., Mechanics of Brittle Fracture. Nauka, Moscow, 1974.
9. WILLIAMS M.L., Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mech. 19, 4, 1952.
10. UFLYAND YA.S., Integral Transformations in Problems of the Theory of Elasticity. Nauka, Leningrad, 1967.
11. KIPNIS L.A., The homogeneous problem for a wedge with a symmetric crack at the tip. PMM, 45, 2, 1981.
12. NOBLE B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations. Pergamon Press, 1958.

Translated by L.K.

PMM U.S.S.R.,Vol.53,No.1,pp.133-135,1989
0021-8928/89 \$10.00+0.00
printed in Great Britain
(C) 1990 pergamon press plc

on a KeLVIn PRoblem*

V.V. KOZLOV

A problem of the stability of equilibrium of a system of interacting particles distributed within a bounded volume of Euclidean space is considered. Sufficient conditions for the instability and existence of the motions approaching the position of equilibrium without bounds, containing the Kelvin theorem/l/ as a special case, are obtained. The results are based on the general theory of instability of equilibrium in a force field with a subharmonic force function.

1. Let us consider the dynamics of a reversible system with kinetic energy $T=\left(g_{i j} v^{i} v^{\prime}\right) / 2$ and force function $U(x)$. The motions are described by the Lagrange equations

$$
\begin{equation*}
\left(L_{v}^{\prime}\right)^{i}-L_{x} i^{\prime}=0, \quad v^{i}=d\left(x^{i}\right) / d t, \quad L=T+U, \quad i \leqslant n \tag{1.1}
\end{equation*}
$$

The coefficients of the metric tensor $g_{i j}$ and the function U are assumed to depend continuously on the x coordinates. We assume that the point $x=0$ is critical for the force function U, and therefore $x=0$ will represent the equilibrium of the system (1.1). We can assume that $U(0)=0$. The function U will be called subharmonic if $\Delta U \geqslant 0$ where Δ is a Laplace-Beltrami operator taken with the minus sign:

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i \jmath} \frac{\partial}{\partial x^{j}}\right), g=\operatorname{det}\left\|g_{i j}\right\|
$$

It is clear that the condition of subharmonicity of the force function does not depend on the choice of the Lagrangian coordinates x^{i}.

Theorem 1. Let us assume that the force function U is subharmonic and its Maclaurin's series is different from zero. Then the equilibrium $x=0$ will be unstable. In the analytic case the condition of subharmonicity is sufficient for the instability to occur.

Proof. Let $g_{0}{ }^{i j}$ be the values of the metric tensor at the point $x=0$. We expand the force function U in a series in terms of homogeneous forms: $U_{m}+U_{m+1}+\ldots, m \geqslant 2$. It can be confirmed that $\Delta U=\Delta_{n} U_{m}+\ldots$ where Δ_{0} is the Laplace-Beltrami operator of the metric $g_{0}{ }^{i j}$ and repeated dots denote terms of order $\geqslant m-2$. Since $\Delta U \geqslant 0$, we have $. \Delta_{0} U_{m} \geqslant 0$. The coefficients of the operator Δ_{0} are independent of x, therefore the function U_{m} is subharmonic in the sense of the classical definition /2/.

Using the well-known inequality

[^0]
[^0]: *Prikl.Matem.Mekhan.,53,1,165-167,1989

