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APPLICATION OF THE PRINCIPLE OF CHOICE TO THE PROBLEM OF 
THE INITIAL DEVELOPMENT OF SLIP LINES FROM A CORNER POINT* 

L.A. KIPNIS and G.P. CHEREPANOV 

Symmetrical problems of initial development near the corner point of the 

boundary of the body of a plastic zone modelled by two straight slip lines 
emerging from the vertex are considered under conditions of plane defor- 

mation. Functional Wiener-Hopf equations of the problems and their exact 

analytic solutions are given. The length of the slip lines and the angle 

of their inclination to the boundary are determined. The principle of 

choice is used to find the latter. According to this principle, of all 

possible directions of the development of slip lines, the direction 

realized corresponds to the maximum value of the rate of dissipation of 
energy by the body. 

The last few years have seen the publication of a number of papers 

in mechanics of fracture, dealing with problems of initial development 

within the bodies, near the concentrators, of plastic zones modelled by 

straight slip lines emerging from the vertex at some angle to the boundary 

/l-6/. Everyone of these problems reduces to a functional Wiener-Hopf 

equation, and its solution is used to establish the dependence of the 

length of the slip line on its angle of inclination to the boundary, the 
latter being a free parameter. The value of this angle at which the slip 

line is of maximum length, is taken as the unknown quantity which 

determines the direction in which the slip line develops. 
In the present paper a new, stricter approach is proposed, towards 

solving the problem of the direction in which the slip lines emerging 

from the corner point develop. The approach is based on the principle of 
-- 
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choice /7/. According to this principle , of all possible directions, 
the direction realised is that corresponding to the maximum value of the 

rate of dissipation of energy by the body. 

1. We consider, under conditions of plane deformation, the problem of the initial devel- 

opment of plastic deformations near the corner point 0 of the boundary of a homogeneous, 
isotropic, ideally elastoplastic body (Fig.1). The problem is 
assumed to be symmetrical about the bisectrix of the angle. We 

study the cases with the following boundary conditions specified 

at its edges: a) the edges are rigidly clamped; b) the edges are 

stress-free; c) tangential stress and normal displacement at the 

edges are equal to zero. We assume thatthe plastic deformations 

are concentrated along two straight slip lines which emerge from 

the corner point and are symmetrical about the bisectrix, with 

the length of the slip lines small compared with the size of the 

body. 
Using the "microscope principle" /8/ and taking into account 

the symmetry of the problem in question, we arrive, in each of 

the cases a), b) and c), at the corresponding boundary value 

Fig.1 problem of class N /8/ of the equilibrium of an infinite elastic 

wedge fl-a<e<f& O<r<oo, n/2<a<n containing a slip 

line at the vertex. An asymptotic curve is formed at infinity, representing a solution of the 
singular canonical problem of the theory of elasticity for a wedge /8, 9/ determined, apart 

from a single arbitrary real constant C, which characterizes the intensity of external field 
and which is assumed given. 

We require to find the length 1 of the slip line and the angle b of its inclination to 

the edge. 

Below we give the solutions of the problem listed above, of class N, and determine the 

function Z(B). According to the principle of choice we take, as the angle of inclination of 
the slip line to the edge, the value of BE 10; al which imparts the maximum value to the 
function 

Here T, is the limiting shear yield, <a> is 

the displacements and a dot denotes differentiation 
In what follows, we assume that the given load 

time (simple loading). 

2. Let the case a) be realized. The boundary 

8 = B, ug =l+ = 0; 8=fi-a, 

Bo IUlSo; 4) 

9 = 0, <oe> = <r,e> = 0, <I&j> = 0 

the jump in the value of a, u,, Ile are 
with respect to C. 

parameter C increases and decreases with 

conditions have the form 

r,e = 0, &I = 0 (p E IO; (2.1) 

0 = 0, r < I, “c,e = T,; e = 0, r > I, <u,) = 0 

e=o, r-,1-0, 

klI e=o, r-+1+0, T,e- 
)/2n(r-Z1) 

(2.2) 

(2.3) 

e = 0, r- 00, T,e = Cg+ + 0 (l/r) 

g=* [ sinoL+2Ja .31n(h+2)(a- @)-hsinL(a-fl)] 
(A+ 1+x)sinXa 

(x = 3 - 4~; g< 0 whenfi E IO; f&r; g> 0 whenfi E ] PO; al; 

g @0) = 0) 

(2.4) 

Here oer rrg. c, are the stresses, E is Young's modulus, v is Poisson's ratio, kl~ is 
the stress intensity coefficient at the top of the slip line to be determined, and )IE]-*/~; 
O[is a unique root of the characteristic equation 

x sin 2 (n + 1)a - (I. + 1) sin 2a = 0 

corresponding to the canonical singular problem in the interval]- 1; OI; where c is the 
constant introduced in Sect.1, 

h + 2; ‘51 = T,, 
which has the dimension of force divided by length to the power 

if Cg>O;r,= -r,, if Cg<O. 
The solution of the formulated problem represents the sum of solutions of the following 

two problems. The first (problem A) differs from the original problem in that instead of the 
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first condition (2.2) we have 

6 = 0, r < 1, z,a = z1 - Cgrk (2.5) 

and at infinity the stresses decay as @(l/r) (in the expression for %,a in (2.4) the first 
term is not present). The second problem represents the corresponding canonical singular 
problem for a wedge. Since the solution of the second problem is known, it remains to con- 
struct the solution of problem A. 

Applying the integral Mellin transform with a complex parameter p/10/ to the equilibrium 
equations, to the compatibility of deformation conditions, to Hooke's law and to the conditions 
(2.1), and taking into account the second condition (2.2) and condition (2.5), we arrive at 
the functional Wiener-Eopf problem A 

x2 = -CgP, K (p) = ctg Pn 

G(P)= 1~t~l-~2~~in2~B+~sin~~)l-~((xsin2p~ --ssin2@)) sinps 
(xsin2pa--psinZa)oospn 

A =sin 2p (a - 6) -t- p sin 2(a -fi), 6 = 0s 2p (a - 0) - 
cos 2 (a - p) 

x1 = (x -I- I)?2 

where (El, Et are sufficiently small. positive numbersj. The solution of Eq.(2.6) is con- 
structed in the same manner as the solution of the equations of the Winer-Hopf problems 
considered in /ll/. We have (r(Z) is the gamma function) 

@+L@=--+~P)G+(P)~, [K+(p);+(p) - x+(_l);+(_l) ]i- 
Tz 

[ 
1 4 

P-k&+* K+(p)G+W - x+(-i,-1)G+(-~-l) II (Rep<9 
@-(p)&!E32 [ P(p) fP+l)Kf(-&P(-*) + 
(P$.h+l)K+(--:a-i)Gt(--h~) I !Rep>O) 

~2.7) 

exp 

K* (p) = I’ (1 i PI/~ b’, 3 P) 

Using (2.71, the asymptotic forms (2.3) and a theorem of Abel-type /12/ we find 

(2.8) 

We assume, #at there are no stress concentrations at the head of the slip line. From 
(2.8) we have 

2IgI~O.+%l~+(--1) 1 
-1lh 

y'~?T(h+2)G+(-J,-i) (2.9) 

Let us apply the principle of choice to find the angle of inclination of the slip line 
with respect to the edge. Let us consider the function 

By the well-known formula of differentiation of integrals which depend on a parameter, 
with variable limits we have 
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Since <U,> kz= 0 it follows from (2.10) that 

(2.11) 

Using the equality 

I = -4 (1 - Y2) IT’@ (1) 12 

we obtain by (2.7), (2.9), (2.11) 

w = Q (a) w. (a, p) (I -+$;y-l 
8 

1 
-a/i 

’ 
w,=/gp 

[G’ (- l)]-a’- 

[G+ (- R - 1)1-z/~ 

(2.12) 

The dependence w,(o) is qualitatively represented in Fig.2. The dashed line corresponds 

to the case 3312-C a< a,, and the solid line to the case a0 <a < n (a,=: 11 dl.5 is the 
single root of the equation W,[&(a)l= w0 (0), p, is the point of the maximum of the function 

wo (f3). It appears that W,(&) >wo (0) for n/2 <a< a0 and w0 (&) < W, (0) for ao< a < 

at. 

I 

20 PO P* Pff = a P A “P 
Fig.2 Fig.3 

On the basis of the principle of choice for the original symmetric problem we can draw 

the following conclusions. For n/2 <'u < a, the slip lines emerging from the corner point 

0 are developing under the angle P = B, with respect to the edges, which increases as the 

wedge aperture angle increases. The values of the angle &, of the characteristic root h 

and the coefficient D for some values of the angle a are given below (V = 0.25) 

Q, deg. 
B., deg. 

:z 100 105 110 115 120 125 130 

2 
55 59 64 

o.E;b:“” 0.862d110-3 0.238.10-0 o.g29 lyoc!: :!i; 
,I! 1:; 2;: 
102 343 855 

For a,<a<n the slip lines develop along the edges. 
h and D are 

The corresponding values of 

OL, deg. 135 140 145 ~.:o~os 150 28.9 252 155 160 284 315 346 375 403 

55.3 

430 165 455 170 479 175 

86.5 119 147 170 187 195 197 

If the case a = a, is realized, then four slip lines emerge from the corner point, two 

of which are located along the edges and two are at an angle to the edges. 
For a=n we arrive at the known result /4, 5/, where the direction of the develop- 

ment of the slip line is found from the condition of maximum of its length. 

3. Let the case b) be realized. The boundary conditions differ from those paresented 

in paragraph 2 in that instead of the first condition (2.1) we have 

9 = p, ce = rre = 0 (p E 10; al) 

and the function g>o is determined by the formula 
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and h E I-V1; 01 represents the single root of the characteristic equation 

sin 2 (h + I)% f (h + 1) sin 2a = 0 

corresponding to the canonical singular problem in the interval ]--1;0[. 
The problem in question reduces to a Wiener-Hopf equation of the form (2.6), where 

G (p) = 1% (sina PB - P sina B) + A (sin 2pB i- P sin 2p)J COJ pn 

(sin2pa+psin2a)sinpx 

K(P) = ---tgFs 

Using the solutions of this equation we obtain an expression for 1 and W, differing 
from (2.9) and (2.12) in, that 

D= VT;?gr(h+2)C"(-l) 1 -l/i z(A+ i)I'(k+a/,) G+(-L-I) ' 

Fig.3 shows the function W,, (6). The function reaches its maximum at the point B 
The slip lines develop, in accordance with the principle of choice, at an angle 8, to the*' 
edges. The values of this angle, as well as the quantities h and D, are given below 

&j$ 
95 105 115 125 135 145 155 165 175 

i$ 2% 3:: 4: *;z 42 4: 4;; 2;; 
D.10' 181 143 129 107 93 80 70 64 59 

When u.=s, the formula for the length of the slip lines is indentical with the known 
formula /l, 6/ (the numerical factors differ by less than O.OOl), and the angle of their 
inclination to the continuation of the crack is 76 o (in /l/ this angle is found from the con- 
dition of maximum length of the slip line, and is equal to 72O). 

4. In case c), the first condition of (2.1) is replaced by 

8 = p, Z,e = 0, ne = 0 (@ E 10; cd) 

and the root h of characteristic equation of the corresponding canonical singular problem 
on the interval I-1; O[ is equal to -2 i- n/u, while g = sin(nfl/a). 

The Wiener-Hopf equation of the problem in question, the formulas for 1 and W, and the 
graph of the function W,, have the same form as intheprevious cases (see Sect.31 in which 

The values of the coefficient D are given below 

2 deg. 1.93 95 2.03 105 2.14 11.5 2.26 125 2.40 135 2.54 145 2.70 155 2.90 165 3.24 175 

and the angle of inclination of the slip lines to the edges is 
0.5". 

&za/2, accurate to within 
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ON A KELVIN PROBLEM* 

V.V. KOZLOV 

A problem of the stability of equilibrium of a systemof interacting 
particles distributed within a bounded volume of Euclidean space is 
considered. Sufficient conditions for the instability and existence of 
the motions approaching the position of equilibrium without bounds, 
containing the Kelvin theorem /l/ as a special case, are obtained. The 
results are based on the general theory of instability of equilibrium 
in a force field with a subharmonic force function. 

1. Let us consider the dynamics of a reversible system with kinetic energy T= (%&')/2 
and force function U(z). The motions are described by the Lagrange equations 

(L'vi)' - LXi' = 0. ui = d(z')/dt, L = T + (I, i < n (1.i) 

The coefficients of the metric tensor Bij and the function V are assumed to depend con- 
tinuously on the z coordinates. We assume that the point x=0 is critical for the force 
function V, and therefore Z=O will represent the equilibrium of the system (1.1). We can 
assume that u (0) = 0. The function V will be called subharmonic if AU>0 where A is a 
Laplace-Beltrami operator taken with the minus sign: 

It is clear that the condition of subharmonicity of the force function does not depend 
on the choice of the Lagrangian coordinates zi. 

Theorem 1. Let us assume that the force function V is subharmonic and its Maclaurin's 
series is different from zero. Then the equilibrium z=o will be unstable. In the analytic 
case the condition of subharmonicity is sufficient for the instability to occur. 

Proof. Let g,'j be the values of themetrictensor at the point z = 0. We expand the 
force function V in a series in terms of homogeneous forms: (Im+um+1+..., m>2. It can be 
confirmed that AU= AOU,,,$... where AO is the Laplace-Beltrami operator of the metric 

g,ij and repeated dots denote terms of order >m- 2. Since AU 90. we have .Aoum > 0. 
The coefficients of the operator A0 are independent of z, therefore the function U,,, is 
subharmonic in the sense of the classical definition /2/. 

Using the well-known inequality 
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